Representation Learning

Representation Learning

- Explicit Features
 - Text (explicit text properties)
 - Unigram, bi-gram, tri-gram, n-gram
 - Image (explicit image properties)
 - Intensity, pixel position, edges, up edges, down edges, etc.
 - Graph/Network (explicit graph properties)
 - degree, cluster coefficient, etc.

Representation Learning

- Explicit Features
 - Text (explicit text properties)
 - Unigram, bi-gram, tri-gram, n-gram
 - Image (explicit image properties)
 - Intensity, pixel position, edges, up edges, down edges, etc.
 - Graph/Network (explicit graph properties)
 - degree, cluster coefficient, etc.
- In deep learning, get rid of the explicit features
 - Learn the representation using neural models

For example

.

Machine Learning Paradigms

• Supervised Learning

- Learning from experience and producing output map
 - Classification: categorical outputs
 - Regression: continuous output
- Unsupervised Learning
 - Discovering patterns in data
 - Clustering: grouping cohesive data points
 - Association: cooccurrence frequency
- Reinforcement Learning
 - Learning control

Clustering

- A way of grouping together data samples that are *similar* in some way according to some criteria
- A form of *unsupervised learning*
- It is a method of *data exploration* a way of looking for patterns or structure in the data that are of interest

Clustering

- A way of grouping together data samples that are *similar* in some way - according to some criteria
- A form of *unsupervised learning*
- It is a method of *data exploration* a way of looking for patterns or structure in the data that are of interest

Similarity/Dissimilarity?

• Euclidean distance

$$d_{euc}(\mathbf{X}, \mathbf{Y}) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

• Cosine Similarity

$$ext{similarity} = \cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = rac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}},$$

Similarity/Dissimilarity?

• Pearson linear correlation

$$\rho(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2}}$$
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$d_p = \frac{1 - \rho(\mathbf{X}, \mathbf{y})}{2}$$

Various Clustering Algorithms

- Partitioning (k-mean)
- Hierarchical (HAC)
- Self Organizing Map (SOM)
- Density Based (DBScan)

Clustering Algorithms

- Partitioning Based Algorithms (kmeans)
- Hierarchical Algorithms
- Self Organizing Map (SOM)
- Density Based Algorithms (DBScan)

Hard and soft clustering

- Hard: No overlapping clusters
- Soft: Clusters may overlap

- Choose k the number of clusters
- Initialize cluster centers μ_1, \dots, μ_k
 - Could pick k data points and set cluster centers to these points
- For each data point,
 - compute distance from each k cluster centers and assign the data point to the closest cluster
- Re-compute cluster centers (mean of data points in clusters)
- Stop when there are no new re-assignments

- Choose k the number of clusters
- Initialize cluster centers μ₁,... μ_k
 - Could pick k data points and set cluster centers to these points
- For each data point,
 - compute distance from each k cluster centers and assign the data point to the closest cluster
- Re-compute cluster centers (mean of data points in clusters)
- Stop when there are no new re-assignments

- Choose k the number of clusters
- Initialize cluster centers μ_1, \dots, μ_k
 - Could pick k data points and set cluster centers to these points
- For each data point,
 - compute distance from each k cluster centers and assign the data point to the closest cluster
- Re-compute cluster centers (mean of data points in clusters)
- Stop when there are no new re-assignments

- Choose k the number of clusters
- Initialize cluster centers μ_1, \dots, μ_k
 - Could pick k data points and set cluster centers to these points
- For each data point,
 - compute distance from each k cluster centers and assign the data point to the closest cluster
- Re-compute cluster centers (mean of data points in clusters)
- Stop when there are no new re-assignments

- Choose k the number of clusters
- Initialize cluster centers μ_1, \dots, μ_k
 - Could pick k data points and set cluster centers to these points
- For each data point,
 - compute distance from each k cluster centers and assign the data point to the closest cluster
- Re-compute cluster centers (mean of data points in clusters)
- Stop when there are no new re-assignments

- Choose k the number of clusters
- Initialize cluster centers μ_1, \dots, μ_k
 - Could pick k data points and set cluster centers to these points
- For each data point,
 - compute distance from each k cluster centers and assign the data point to the closest cluster
- Re-compute cluster centers (mean of data points in clusters)
- Repeat untill there are no new reassignments

Evaluation Methods

- Purity
- Rand Index (RI)
- Normalised Mutual Information (NMI)

Evaluation Methods - Purity

$$\operatorname{purity}(\Omega,\mathbb{C}) = rac{1}{N}\sum_k \max_j |\omega_k \cap c_j|$$

 $\Omega = \{\omega_1, \omega_2, \dots, \omega_K\} \text{ is the set of clusters}$ $\mathbb{C} = \{c_1, c_2, \dots, c_J\} \text{ is the set of classes}$

N = Number of samples

Evaluation Methods

Evaluation Methods

TP: two samples belonging to same class, predicted as same cluster TN: two samples belonging to different classes, predicted as different cluster FP: two samples belonging to different classes, predicted as same cluster FN: two samples belonging to same class, predicted as different cluster