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Representation Learning

• Explicit Features
• Text (explicit text properties)

• Unigram, bi-gram, tri-gram, n-gram

• Image (explicit image properties)

• Intensity, pixel position, edges, up edges, down edges, etc.

• Graph/Network (explicit graph properties)

• degree, cluster coefficient, etc.
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• Unigram, bi-gram, tri-gram, n-gram

• Image (explicit image properties)
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• In deep learning, get rid of the explicit features

• Learn the representation using neural models
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For example







Clustering



Machine Learning Paradigms
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• Supervised Learning
• Learning from experience and producing output map

• Classification: categorical outputs

• Regression: continuous output

• Unsupervised Learning
• Discovering patterns in data

• Clustering: grouping cohesive data points

• Association: cooccurrence frequency

• Reinforcement Learning
• Learning control
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Clustering

• A way of grouping together data samples
that are similar in some way - according to
some criteria

• A form of unsupervised learning

• It is a method of data exploration – a way
of looking for patterns or structure in the
data that are of interest
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Similarity/Dissimilarity?
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• Euclidean distance

• Cosine Similarity



12

Similarity/Dissimilarity?

• Pearson linear correlation
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Various Clustering Algorithms

• Partitioning (k-mean)
• Hierarchical (HAC)
• Self Organizing Map (SOM)
• Density Based (DBScan)
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Clustering Algorithms

• Partitioning Based Algorithms (k-
means)

• Hierarchical Algorithms
• Self Organizing Map (SOM)
• Density Based Algorithms (DBScan)

Hard and soft clustering
• Hard: No overlapping clusters
• Soft: Clusters may overlap
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K-Means Clustering

• Choose k - the number of clusters

• Initialize cluster centers 1,… k

• Could pick k data points and set cluster 
centers to these points

• For each data point, 
• compute distance from each k cluster centers 

and assign the data point to the closest cluster

• Re-compute cluster centers (mean of data 
points in clusters)

• Stop when there are no new re-assignments
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K-Means Clustering

• Choose k - the number of clusters

• Initialize cluster centers 1,… k

• Could pick k data points and set cluster 
centers to these points

• For each data point, 
• compute distance from each k cluster centers 

and assign the data point to the closest cluster

• Re-compute cluster centers (mean of data 
points in clusters)

• Repeat untill there are no new re-
assignments

K = 3
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Evaluation Methods

• Purity
• Rand Index (RI)
• Normalised Mutual Information (NMI)
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Evaluation Methods - Purity

N = Number of samples
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Evaluation Methods

N = Number of samples
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Evaluation Methods

TP: two samples belonging to same class, predicted as same cluster
TN: two samples belonging to different classes, predicted as different cluster
FP: two samples belonging to different classes, predicted as same cluster
FN: two samples belonging to same class, predicted as different cluster


